II. LIST OF SOLVENTS INCLUDED IN THE Q3C GUIDANCE

Solvent	Other Names	Structure	Class
Acetic acid	Ethanoic acid	CH ₃ COOH	Class 3
Acetone	2-Propanone Propan-2-one	CH ₃ COCH ₃	Class 3
Acetonitrile		CH ₃ CN	Class 2
Anisole	Methoxybenzene	<ि≻осњ	Class 3
Benzene	Benzol	\bigcirc	Class 1
1-Butanol	n-Butylalcohol Butan-1-ol	CH ₃ (CH ₂) ₃ OH	Class 3
2-Butanol	sec-Butylalcohol Butan-2-ol	CH ₃ CH ₂ CH(OH)CH ₃	Class 3
Butylacetate	Acetic acid butyl ester	CH ₃ COO(CH ₂) ₃ CH ₃	Class 3
tert-Butylmethylether	2-Methoxy-2-methyl-propane	(CH ₃) ₃ COCH ₃	Class 3
Carbon tetrachloride	Tetrachloromethane	CCl ₄	Class 1
Chlorobenzene		⊘-cı	Class 2
Chloroform	Trichloromethane	CHCl ₃	Class 2
Cumene	Is opropylbenzene (1-Methyl)ethylbenzene	C ₆ H ₅ -CH(CH ₃) ₂	Class 2
Cyclohexane	Hexamethylene	\bigcirc	Class 2
1,2-Dichloroethane	sym-Dichloroethane	CH ₂ ClCH ₂ Cl	Class 1
	Ethylene dichloride Ethylene chloride		
1,1-Dichloroethene	1,1-Dichloroethylene Vinylidene chloride	H ₂ C=CCl ₂	Class 1
1,2-Dichloroethene	1,2-Dichloroethylene Acetylene dichloride	CIHC=CHCI	Class 2

Dichloromethane	Methylene chloride	CH ₂ Cl ₂	Class 2
1,2-Dimethoxyethane	Ethyleneglycol dimethyl ether Monoglyme Dimethyl Cellosolve	H ₃ COCH ₂ CH ₂ OCH ₃	Class 2
N,N- Dimethylacetamide	DMA	CH ₃ CON(CH ₃) ₂	Class 2
N,N- Dimethylformamide	DMF	HCON(CH ₃) ₂	Class 2
Dimethylsulfoxide	Methylsulfinylmethane Methylsulfoxide DMSO	(CH ₃) ₂ SO	Class 3
1,4-Dioxane	p-Dioxane [1,4]Dioxane	৾৽	Class 2
Ethanol	Ethylalcohol	CH ₃ CH ₂ OH	Class 3
2-Ethoxyethanol	Cellosolve	CH ₃ CH ₂ OCH ₂ CH ₂ OH	Class 2
Ethylacetate	Acetic acid ethylester	CH ₃ COOCH ₂ CH ₃	Class 3
Ethyleneglycol	1,2-Dihydroxyethane 1,2-Ethanediol	HOCH ₂ CH ₂ OH	Class 2
Ethylether	Diethylether Ethoxyethane 1,1'-Oxybisethane	CH ₃ CH ₂ OCH ₂ CH ₃	Class 3
Ethylformate	Formic acid ethylester	HCOOCH ₂ CH ₃	Class 3
Formamide	Methanamide	HCONH ₂	Class 2
Formic acid		НСООН	Class 3
Heptane	n-Heptane	$CH_3(CH_2)_5CH_3$	Class 3
Hexane	n-Hexane	$CH_3(CH_2)_4CH_3$	Class 2
Isobutyl acetate	Acetic acid isobutylester	CH ₃ COOCH ₂ CH(CH ₃) ₂	Class 3
Isopropyl acetate	Acetic acid isopropyl ester	CH ₃ COOCH(CH ₃) ₂	Class 3
Methanol	Methylalcohol	CH ₃ OH	Class 2
2-Methoxyethanol	MethylCellosolve	CH ₃ OCH ₂ CH ₂ OH	Class 2
Methylacetate	Acetic acid methylester	CH ₃ COOCH ₃	Class 3
3-Methyl-1-butanol	Isoamyl alcohol Isopentyl alcohol 3-Methylbutan-1-ol	(CH ₃) ₂ CHCH ₂ CH ₂ OH	Class 3
Methylbutylketone	2-Hexanone	CH ₃ (CH ₂) ₃ COCH ₃	Class 2

	Hexan-2-one		
Methylcyclohexane	Cyclohexylmethane	⊖-сн₀	Class 2
Methylethylketone	2-Butanone MEK Butan-2-one	CH ₃ CH ₂ COCH ₃	Class 3
Methylisobutylketone	4-Methylpentan-2-one 4-Methyl-2-pentanone MIBK	CH ₃ COCH ₂ CH(CH ₃) ₂	Class 2
2-Methyl-1-propanol	Is obutyl alcohol 2-Methylpropan-1-ol	(CH ₃) ₂ CHCH ₂ OH	Class 3
N-Methylpyrrolidone	1-Methylpyrrolidin-2-one 1-Methyl-2-pyrrolidinone	∠N∼o cH₃	Class 2
Nitromethane		CH ₃ NO ₂	Class 2
Pentane	<u>n</u> -Pentane	CH ₃ (CH ₂) ₃ CH ₃	Class 3
1-Pentanol	Amyl alcohol Pentan-1-ol Pentyl alcohol	CH ₃ (CH ₂) ₃ CH ₂ OH	Class 3
1-Propanol	Propan-1-ol Propyl alcohol	CH ₃ CH ₂ CH ₂ OH	Class 3
2-Propanol	Propan-2-ol Is opropyl alcohol	(CH ₃) ₂ CHOH	Class 3
Propylacetate	Acetic acid propylester	CH ₃ COOCH ₂ CH ₂ CH ₃	Class 3
Pyridine		<u><_</u> N	Class 2
Sulfolane	Tetrahydrothiophene 1,1-dioxide	∽ o≈s≈o	Class 2
Tetrahydrofuran	Tetramethylene oxide Oxacyclopentane	$\langle \mathbf{o} \rangle$	Class 2
Tetralin	1,2,3,4-Tetrahydro-naphthalene	$\hat{\mathbf{C}}$	Class 2
Toluene	Methylbenzene	⊘сн₃	Class 2
1,1,1-Trichloroethane	Methylchloroform	CH ₃ CCl ₃	Class 1
1,1,2-Trichloroethene	Trichloroethene	HCIC=CCl ₂	Class 2
Triethylamine	N,N-Diethylethanamine	$N(CH_2CH_3)_3$	Class 3

Xylene¹

Dimethybenzene Xylol сӊ҈–ӷ҈Ӈсӊ

Class 2

¹Usually 60% m-xylene, 14% p-xylene, 9% o-xylene with 17% ethyl benzene.

III. SOLVENTS GROUPED BY CLASS

Solvents in Class 1 (Table 1) should not be employed in the manufacture of drug substances, excipients, and drug products because of their unacceptable toxicity or their deleterious environmental effect. However, if their use is unavoidable in order to produce a drug product with a significant therapeutic advance, then their levels should be restricted as shown in Table 1, unless otherwise justified. The solvent 1,1,1-Trichloroethane is included in Table 1 because it is an environmental hazard. The stated limit of 1,500 ppm is based on a review of the safety data.

Solvent	Concentration Limit (ppm)	Concern
Benzene	222	Carcinogen
Carbon tetrachloride	مواد شيمياني والجهزات	Toxic and environmental hazard
1,2-Dichloroethane	آزمايشگانون	Toxic
1,1-Dichloroethene	8	Toxic
1,1,1-Trichloroethane	1,500	Environmental hazard

Table 1. – Class 1 Solvents in Pharmaceutical Products (Solvents That Should Be Avoided)

Solvents in Class 2 (Table 2) should be limited in pharmaceutical products because of their inherent toxicity. PDEs are given to the nearest 0.1 mg/day, and concentrations are given to the nearest 10 ppm. The stated values do not reflect the necessary analytical precision of determination. Precision should be determined as part of the validation of the method.

Solvent	PDE (mg/day)	Concentration Limit (ppm)
Acetonitrile	4.1	410
Chlorobenzene	3.6	360
Chloroform	0.6	60
Cyclohexane	38.8	3,880
Cumene	0.7	70
1,2-Dichloroethene	18.7	1,870
Dichloromethane	18 7 6.0	600
1,2-Dimethoxyethane	1.0	100
N,N-Dimethylacetamide	10.9	1,090
N,N-Dimethylformamide	3 8.8	880
1,4-Dioxane	3.8	380
2-Ethoxyethanol	C1.6 Laib	160
Ethyleneglycol	3.1	310
Formamide	2.2	220
Hexane	2.9	290
Methanol	30.0	3,000
2-Methoxyethanol	0.5	50
Methylbutylketone	0.5	50
Methylcyclohexane	11.8	1,180
Methylisobutylketone ²	45	4,500
N-Methylpyrrolidone	5.3	530
Nitromethane	0.5	50
Pyridine	2.0	200
Sulfolane	1.6	160
Tetrahydrofuran	7.2	720
Tetralin	1.0	100

Table 2. – Class 2 Solvents in Pharmaceutical Products

 $^{^{2}}$ The information included for Methylis obutylketone reflects that included in the *Revision of PDE Information for Methylisobutylketone*, which reached *Step 4* in November 2016 and was subsequently incorporated into the core guidance.

Toluene	8.9	890
1,1,2-Trichloroethene	0.8	80
Xylene ¹	21.7	2,170

¹Usually 60% m-xylene, 14% p-xylene, 9% o-xylene with 17% ethylbenzene.

Solvents in Class 3 (Table 3) may be regarded as less toxic and of lower risk to human health. Class 3 includes no solvent known as a human health hazard at levels normally accepted in pharmaceuticals. However, there are no long-term toxicity or carcinogenicity studies for many of the solvents in Class 3. Available data indicate that they are less toxic in acute or short-term studies and negative in genotoxicity studies. It is considered that amounts of these residual solvents of 50 mg per day or less (corresponding to 5,000 ppm or 0.5 percent under Option 1) would be acceptable without justification. Higher amounts may also be acceptable provided they are realistic in relation to manufacturing capability and good manufacturing practice (GMP).

Table 3. – Class 3 Solvents Which Should Be Limited by GMP or Other Quality-Based Requirements

Acetic acid	نهاد	Heptane
Acetone	ن جب ب	Isobutylacetate
Anisole	شطوري	Isopropylacetate
1-Butanol	مواد شیمیایی و تجهیزات	Methylacetate
2-Butanol	آزمایشگاهی	3-Methyl-1-butanol
Butylacetate		Methylethyl ketone
tert-Butylmethylether	c .	2-Methyl-1-propanol
Dimethylsulfoxide		Pentane
Ethanol		1-Pentanol
Ethylacetate		1-Propanol
Ethylether		2-Propanol
Ethylformate		Propylacetate
Formic acid		Triethylamine ³

³ The information included for Triethylamine reflects that included in the *Revision of PDE Information for Triethylamine*, which reached *Step 4* in November 2016 and was subsequently incorporated into the core guidance.

The solvents listed in Table 4 may also be of interest to manufacturers of excipients, drug substances, or drug products. However, no adequate toxicological data on which to base a PDE were found. Manufacturers should supply justification for residual levels of these solvents in pharmaceutical products.

Table 4. – Solvents for Which No Adequate Toxicological Data Were Found

1,1-Diethoxypropane	Methylisopropylketone
1,1-Dimethoxymethane	Methyltetrahydrofuran
2,2-Dimethoxypropane	Petroleumether
Isooctane	Trichloroacetic acid
Isopropylether	Trifluoroacetic acid

